Measuring Sentiment Annotation Complexity of Text
نویسندگان
چکیده
The effort required for a human annotator to detect sentiment is not uniform for all texts, irrespective of his/her expertise. We aim to predict a score that quantifies this effort, using linguistic properties of the text. Our proposed metric is called Sentiment Annotation Complexity (SAC). As for training data, since any direct judgment of complexity by a human annotator is fraught with subjectivity, we rely on cognitive evidence from eye-tracking. The sentences in our dataset are labeled with SAC scores derived from eye-fixation duration. Using linguistic features and annotated SACs, we train a regressor that predicts the SAC with a best mean error rate of 22.02% for five-fold cross-validation. We also study the correlation between a human annotator’s perception of complexity and a machine’s confidence in polarity determination. The merit of our work lies in (a) deciding the sentiment annotation cost in, for example, a crowdsourcing setting, (b) choosing the right classifier for sentiment prediction.
منابع مشابه
Inter-Annotator Agreement in Sentiment Analysis: Machine Learning Perspective
Manual text annotation is an essential part of Big Text analytics. Although annotators work with limited parts of data sets, their results are extrapolated by automated text classification and affect the final classification results. Reliability of annotations and adequacy of assigned labels are especially important in the case of sentiment annotations. In the current study we examine inter-ann...
متن کاملGold-standard for Topic-specific Sentiment Analysis of Economic Texts
Public opinion, as measured by media sentiment, can be an important indicator in the financial and economic context. These are domains where traditional sentiment estimation techniques often struggle, and existing annotated sentiment text collections are of less use. Though considerable progress has been made in analyzing sentiments at sentence-level, performing topic-dependent sentiment analys...
متن کاملText Analytics of Customers on Twitter: Brand Sentiments in Customer Support
Brand community interactions and online customer support have become major platforms of brand sentiment strengthening and loyalty creation. Rapid brand responses to each customer request though inbound tweets in twitter and taking proper actions to cover the needs of customers are the key elements of positive brand sentiment creation and product or service initiative management in the realm of ...
متن کاملSentiment analysis methods in Sentiment analysis methods in Persian text: A survey
With the explosive growth of social media such as Twitter, reviews on e-commerce website, and comments on news websites, individuals and organizations are increasingly using opinions in these media for their decision making. Sentiment analysis is one of the techniques used to analyze userschr('39') opinions in recent years. Persian language has specific features and thereby requires unique meth...
متن کاملAnnotation Scheme for Constructing Sentiment Corpus in Korean
This paper describes the first year of work constructing the Korean Sentiment Corpus, focusing on the theoretical background such as the annotation scheme. Our aim is to provide a solid theoretical background for the corpus which reflects the characteristics of the Korean language and includes approximately 8,050 sentences taken from news articles. The corpus annotation scheme, based on the MPQ...
متن کامل